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1. Introduction. Let X denote a N(6,1) random variable, where 6 is the parameter,
which is distributed according to an unknown prior distribution G on (—oo, 00). We consider
the problem of testing the hypotheses Hy : f < 0 versus Hy : & > 0. The loss function
is 1(6,0) = max{6,0} for accepting Ho and 1(0,1) = max{—0,0} for accepting H;. A
test d(z) is defined to be a measurable mapping from (—o00, 00) into [0,1] so that 6(z) =
P{ accepting H1|X = =}, ie, §(z) is the probability of accepting H; when X = z is

observed. Let R(G,d) denote the Bayes risk of a test § when G is a prior distribution. Given

that E[|0]] < oo, a Bayes test dg is found as
bc(x) =1 if E[0|X =] >0, and dg(z) =0 if E[f|X = z] < 0.

Because E[f|X = z] involves G, the above solution works only if the prior G is known. If G is
unknown, this testing problem is formed as a compound decision problem and the empirical
Bayes approach is used. Let Xi, X, - ., X, be the observations from n independent past
experiences. Based on )?n = (X1, Xs, -+, Xp) and X, an empirical Bayes rule 6,(X, 5(:,,)
can be constructed. The performance of 6, is measured by R(G,6,) — R(G,ég), where -
R(G,4,) = E[R(G,5n|5('n)]. The quantity R(G,é,) — R(G,d¢g) is referred as the regret
Bayes risk (or regret) in the literature.

The empirical Bayes approach was introduced by Robbins (1956, 1964). Since then, it
has been widely used in statistics. For its applications in testing problems, much research
has been done. For example, Johns and Van Ryzin (1972) studied the empirical Bayes
tests for the general continuous one-parameter exponential family. Van Houwelingen (1976)
constructed the monotone empirical Bayes tests for the same family and showed that the tests
have good performance for large samples and small samples as well. Stijnen (1985) studied

the asymptotic behavior of both the monotone empirical Bayes rules and non-monotone rules.

Karunamuni and Yang (1995) also studied monotone rules and their asymptotic behavior.




For the problem described above, Karunamuni (1996) “claimed” that he obtained the
optimal rate of convergence of monotone empirical Bayes tests (in minimax sense). Later,
Liang (2000a) and Liang (2000b) obtained a faster rate than Karunamuni’s “optimal rate”.
So an interesting question arises: what is the optimal rate of empirical Bayes tests for the

normal mean? We shall answer the question in this paper.

After introducing some preliminary results in Section 2, we start our answer with consid-
ering monotone empirical Bayes tests for a single prior in Section 3. A method to construct
monotone empirical Bayes tests is suggested. A typical rule is constructed from this method
and an upper bound of its regret is obtained using the non-uniform estimate of the reminder
in the central limit theorem (Theorem 3.1). In Section 4, we use the results in Section 3
to get a upper bound of monotone empirical Bayes tests over a broad class of prior dis-
tributions (Theorem 4.1). And a lower bound is obtained by careful construction of the
“hardest 2-point subproblem” (Lemma 4.3 and Theorem 4.2). Then we find the optimal
rate of monotone empirical Bayes tests. And clearly, all the empirical tests based on the

method in Section 3 achieve the optimal rate. All proofs are given in Section 5.

2. Preliminary. To ensure that the Bayes analysis can be carried out, we assume
pe = [10|dG(8) < oo. Also, assume P(6 > 0)-P(6 < 0) > 0 in the following. If P(6 > 0) = 0
or P(#-< 0) = 0, it is known which action one should take regardless of the value of z. So
both these cases are excluded from the decision problem.

Denote the density of X by f(z|0) = c(6) exp(fz)h(z), where c(f) = exp(—62/2)/v2r
and h(r) = exp(—z?/2). Let fe(z) = [ f(2|0)dG () be the marginal density of X. Denote
de(r) = E[0]X = z] and w(z) = — [0f(2]0)dG(0) = —fe(z)dc(z). Since pe < oo, fo(z),
éc(x) and w(z) are infinitely differentiable.

Noting that fg(z) > 0 and ¢ (z) is increasing, the Bayes rule stated in Section 1 can be




represented as
1 if ge(z) > 0= w(zr) <0<z > cg,
oc(z) = ‘ (2.1)
0 if ge(r) < 0<= w(z) >0 += z < cg,

where ¢ = sup{z : w(z) > 0}. c¢ is called the critical point corresponding to G.

study of (1985)) for discussions

Since the Bayes rule dg is characterized by a single number c¢g, a monotone empirical
Bayes test (MEBT) can be constructed through estimating cg by cn(X1, X2, -, Xy), say,
and defining

=1 1if x>¢,, and §,=0 if T <cu. (2.2)

Note that R(G,0) = [5° 0dG(0) + [ é(z)w(z)dz. Then the regret of 6, is expressed as

R(G, ,) — R(G,d¢) E/ w(z)dz (2.3)

3. A class of MEBT’s. Before considering the optimal rate of MEBT’s over a class
of prior distributions, we consider MEBT’s for a single prior in this section.
Let k(z) be a kernel function of form k(z) = (27)~! [ exp(itz)A(t)dt, where A(t) satisfies

A(t) = 1 in a neighborhood of the origin. This type of kernels could be found in Devroye

and Gyorfi (1985). Two typical examples are
k(z) = (nz) 'sinz or k(z) = (4/72*){[sin(z/2)])* — [sin(z/4)]*}.

See Hall and Marron (1988). MEBT’s can be constructed based on these kernels and the
asymptotic behaviour for the MEBT’s is the same. For simplicity, we use k(z) = (rz) 'sinz
in the following. For this k(z), A(t) = Ijy<y. Let u = u, = (In n)" Y2 (u, = 1if n = 1).

Denote

—n'IZ{ X; — z)/u) [v’] = [(X;/w)k((X; — 2)/u)]}- (3.1)




It is shown later that W,(z) is a consistent estimator of w(z).
Liang (20002, 2000b) have constructed empirical Bayes rules based on (3.1) by mimicking

the Bayes rule (2.1). The approach we are using here is different from his.

Let £ = &, = (Inlnn)'/2. Observe that cg = ffé Tiuw(z)>0)dz — € as n is large. Then define
3
Cpn = /—5 Iiw, (z)>0dr — &, (3.2)
and propose d,(z) as
bp=1 if z>¢, and 6,=0 1if z<ec,. (3.3)

To consider the convergence rate of d,, we first express the regret of ¢, through ¢, — cg.

Throughout this section, assume that E[|f|] < co and P(# > 0) - P(8 < 0) > 0.
Lemma 3.1. —c0 < cg < o0 and —w'(cg) = [ 62 f(cc|0)dG() > 0.

Lemma 3.2. Fore > 0, let A = infoe[eg—ccotq[—w' ()] and B = SUPe[eg—c cqre [W (2)]-

Then 3 eg > 0 such that for € < g, Ac > A, > 0 and

R(G,6,) — R(G,6¢) < 1/20.E[(ca — cc)?] + pce *El(cn — ca)]- (3.4)

Asnislarge, ¢ € [—€, €] and ¢, —ce = = [°¢ Iy, (2)<0)d + [&, Tyw,(2)>0dz. To study the
rate of ¢, going to cg, we rewrite Wy (z) as Wy (z) = n~! X7, Va(Xj, x), where V,(X;, z) =
[K((X; — z)/u)/u?] — [(X;/w)k((X; — z)/u)]. Note that V,(X;,z) are i.i.d. for fixed z and
n. So the non-uniform estimate of the remainder in the central limit theorem can be used
to find P(W,(z) > 0) and P(W,(z) < 0) for each z € [-f;&]. Combining the properties of

w(z) on [—¢&,&], the following result is derived in Subsection 5.3.




Theorem 3.1. 8, has a rate of convergence of (Inn)'®/n. Moreover,

lim {0} (nn) 3 (R(G,,) — R(G,0a)]} < [7V3 [ Ff(eald)dG@O]™. (3.5)

n—00

Remark 3.1. Liang (2000a) studied the problem under a critical condition that cg €
[~A, A]. He constructed an empirical Bayes rule 4, with a rate (Inn)'3/n. Later Liang
(2000b) constructed another rule with rate (In n)15+¢ /n without the assumption cg € [—A, A].
Since 6% requires cg € [—A, A] and A must be given in the construction of ¢, d;, does not
achieve the best possible rate as 4, does in Theorem 4.1 (below). To illustrate this, let
Go = {G; : Ps,(0 <0)- Pg, 9 > 0)'> 0,i =1,---,m} be a finite set of prior distributions.
Then Gy C G for some (unknown) s, b and L (G is defined in (4.1) below). From Theorem
4.1, 6, has the rate (Inn)'*/n over Gy clearly and J;; does not necessarily. Even through &;;
has the rate (Inn)!%/n for a single prior G, 4;, is not robust and the assumption cg € [—A, 4]
is difficult to check in applications.

Remark 3.2. In (3.2) we use the integration of [, (z)>0)- This technique is similar to an
idea used by Brown, Cohen, and Strawderman (1976), Van Houwelingen (1976) and Stijnen
(1985). Another technique used in (3.2) is localization. We have the integration only from
—£ to € in (3.2) through localization. As n — oo, [—¢&, €] expands to the whole interval. But
it is a compact interval for each n. Instead of considering W, (z) and w(z) for z € (—00, 00),
we consider them only for z € [—¢,£] and therefore many crucial properties of Wy,(z) and
w(z) can be obtained. For more mathematical details, see Lemma 5.1 and the proof of
Theorem 3.1 in Subsection 5.3. Statistically, the rationale behind (3.2) is that, according to
the monotonicity of ¢g(z), one would like to accept Hy if z is quite large and accept Hy if

r is quite small. Here we use —£ and § as cut-off points since ¢, € [=£, ]

Remark 3.3. Theorem 3.1 gives a useful formula for estimating the constant in the




upper bound. For example, if G is symmetric with support [—1,1] and P(|6] > 0.5) > 0.5,
then {mv/3 [ 0% f(cc|0)dG(0)} ! < 6.2.
4. Optimal Rate. We obtain the optimal rate over a broad class of prior distributions

in this section. Define,
G =1{G: pe < po, lcc| < b,/02f(cG|0)dG(9) > LY. (4.1)

where o > 0, b > 0 and L > 0 may be unknown. We assume that G is a broad class so that
G(f) = N(8,1) € G. Let ¢(z) = — [ 0c(0) exp(0z)dG(0). Clearly, —¢'(z) > 0. Actually,

—1'(z) has a (positive) uniform lower bound on [—b,b] over G.
Lemma 4.1. For some g > 0, infgeg infye(_p—1,+1) |9’ ()| > %o-

Following the proof of Theorem 3.1 and applying Lemma 4.1, we have the following

theorem.
Theorem 4.1. For some l > 0, supgeg[R(G, 6,) — R(G,06)] < 1+ (Inn)*3/n.

Next we shall find a lower bound of MEBT’s over G. In the following, let {;, l5, - - - denote
positive constants, which may have different values on different occasions.

Let C be the set of estimators ¢, of cg and D be the set of empirical Bayes rules of type
(2.2) with ¢, = ¢, € C. Let C = {c;,V(=b)Ab: ¢}, € C}. Forc;, € C, denote &, = ¢,V (—b)Ab.

Then by Taylor expansion and Lemma 4.1

/C * w(z)dz > h(b) / :G W(@)dz = —1/2hB)Y E) (@0 — c6)? > (@ — ca)?,  (4.2)

Note that R(G,d;) — R(G,6c) = E[f° w(z)dz] and C C C.

inf sup[R(G, %) — R(G,d¢)] > Iy inf_sup E(&, — cg)* > & inf sup E(c} —cg)®.  (4.3)
6.€D Geg tn€C Geg €€ Geg

Let F = {fc(x) : G € G} and ¢ be the critical point corresponding to f. For fi, fo € F,
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let x2(f1, f2) = [{fi(z) — fo(z)}2f7 (z)dz be the x? distance of f; and f,. Then

inf sup E(c), — ce)? > lisup{(cys, — cfz)2 X2 (f1, f2) o/, Yfi,f2 € F}, (4.4)

cn€C Geg
(4.4) was proved in Donoho and Liu (1991) and others. We shall find a lower bound of
RHS of (4.4 ) through a careful construction of “hardest 2-point subproblem” (Donoho and
Liu (1991)), i.e., we need to construct f; and fp such that the supermum of RHS of (4.4) is
obtained. This type of construction is often used to find a lower bound for various problems;
see Fan (1991, 1993) for example. But the construction for this empirical Bayes testing
problem appears so different: we cannot find f first and then find f, in the x*-distance ball

around f,. Here the center of the ball is moving too. Let fi(z) = [ f(x]0)9:(6)d0, where
g1(8) = mac(8)[1 + ubI(6 > 0)] and g2(0) = ma[g:1(0) + u’c(0)H (V26/u)]

with (i) v such that u®** = n~%, (ii) m; satisfies [g:(0)dd = 1 for ¢ = 1, 2, (iii) H(z) =

(2m) 7 [ Ag(t) exp(itz)dt, and Mg (t) = exp(t?/(2u?)) Ijy<y-
Lemma 4.2. As n is large, f; € F, x*(f1, f2) < la/n, and (¢, — cs,)? > 13- (lnn)t®/n.
Based on (4.3), (4.4) and Lemma 4.2, the next theorem follows naturally.
Theorem 4.2. For some | > 0, infs: epsupgeg[R(G,8;) — R(G,d6)] = 1+ (In n)t5/n.

Remark 4.1. Theorem 4.2 tells us that the best possible rate of MEBT’s is (Inn)™®/n.

Based on Theorem 4.1 and Theorem 4.2, one sees that the optimal rate of convergence of

MEBTs is (Inn)!*/n and 6, achieves this optimal rate.

Remark 4.2. For a long time, it was thought that n~! is a lower bound of empirical

Bayes rule for the continuous exponential family (including the normal distribution); see

Singh (1979) for his conjecture about the estimation problem. Surprisingly, we obtain that




the best possible rate for the normal distribution is (Inn)!®/n. So, even through n~' is a
lower bound for general continuous exponential family (see Gupta and Li (2000) ), we believe

that n~! is not obtainable.

5. Proofs.

5.1. Proof of Lemma 3.1. Note that P(6 > 6.) > 0 for some 6, > 0. And also

fb_0c(0) exp(6z — 0.2)dG(0) + 0. [5° c(6) exp(8z — 0.x)dG(6)

$oE) 2 00y exp 0z — 0,2)dG(0) + Ji7 cl6) exp(6x — 0.)dC (D)

Then lim;_yo0 dc(z) > 6 > 0. Therefore cg < co. Similarly cg > —o0. It is clear that

—w'(cg) = [ 62 f(cel0)dG(0) < oo. This completes the proof of Lemma 3.1.

5.2. Proof of Lemma 3.2. Since w'(z) is continuous, A., > 0 for some e¢. As € < €g,

]

ca
R(G,8,) — R(G,66) < Elljer—cop>e / w(2)dz) + Ellje,—cl<d / w(z)dz]

n

< pgeE(cn, —cg)* + 1/2w0.E(cn, — ca)?,
where [;¢ w(z)dz < [|w(z)|dz < pe and by Taylor expansion

cG
I[Icn—chSe]/ w(z)dr = —1/2 x w' (&) (cn — ¢6)* L[jen—cal<q < 1/2We(cn — ce)?

5.3. Proof of Theorem 3.1. We prove Theorem 3.1 in two steps.

Step 1: We present two lemmas. Their proofs are in Subsection 5.7 and 5.8.

Denote wy(z) = E[Va(X;, %)), Zin = Va(Xj, ) — wn(z), 02 = E[Z},] and 1 = E[| Z;s|?].
Let p = 1/\/117:/_5, d, = 1/vnud and ¢, = 1 — (pm) "L pcu®/2.

Lemma 5.1. The following statements hold (asn > 5).

(i) For e >0, 3 M, > 0 such that |w(z)| > M.(Inn)~! for z € [, &]\[ca — €, cc + €]

(i) For z € (—00,00), Jw,(z) — w(z)| < 7 pe - wexp(—1/(2u?)) = din.

(iii) For z € [—£,€&], 0n < donu™3/2, dy, = (37) 712 + ul/4.
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(IV) Forz € [—gag]: Tn < ’)’U_s, vy=142ug.

Lemma 5.2. If z € (=£,&) and w(z) > pdy,
P(Wa(2) < 0) < ®(=Vnulguw(x)/don) + Av/{gpu’n’[w(@)]}- (5.1)

If z € (—=¢,€) and w(z) < —pdy,
P(Wy(z) > 0) < [1 = ®(—Vnudgnw(z)/dsn)] + Av/{gmu’n*|w(z) [’} (5-2)
where A is some constant and ®(-) is the c.d.f. of N(0,1).

Step 2: We present the main proof. Since (3.4) holds for any small € and A — —w'(ca)

as € — 0, we only need to show that

lim {(ne®) El(cn — cc)?]} < 2/(nVB3[w'(ca)),  Jim {(nw®)El(en — c6)']} = 0. (5:3)

n—oo
Let I = ff‘g Iiw,(z)<q)dz and 11 = ffc Iw,(z)>0dz. Then ¢, —cg = —I +II. For € < €g, let

m = cg — €. As n is large, ;> —€. Then I? < 2¢I; + 212 + 212, where

cG

m cG
L = / ; [m@sads, 1= /ﬂ lu@spaads,  Ts= | = Iwa@)<ow(@)>pin) 4T
- 1 1
For z € [-€,m], w(z) > Mc(Inn)~' > pd, from Lemma 5.1. Then by Lemma 5.2
n
EE[L] < € / ; P(Wa(z) < 0)dz < L®(—n"?) + ln™*? = o(n™). (5.4)
For z € [n1,ccl, —w'(z) > Ac (= Aeg > 0). Thus by letting y = w(z)/(pdy),
ce 00
I < AZl/ Tw(e)<pda)[—w' (z)]dz < PdnA§1/0 Iy<dy = pd, A7 (5.5)
m
By Holder inequality and Lemma 5.2,
2 ¢ -3 °c 3
BIE) < 1 v @liwppaads] | POV(@) < 0w’ @liopaids]  (59)

< (@A) AT g ) 2 [ @(—y)ydy + g tumn

From (5.4)-(5.6),

Tim {(nu®) E[1%)} = lim lim {(nu®) B[]} < 1/(nv/3{w'(cq)]").




11

Similarly, limn_,co{ (nu?) E[II?]} < 1/(7v/3[w'(cg)]?). Then the first part of (5.3) is proved.

The second can be proved similarly. The details are omitted.

5.4. Proof of Lemma 4.1. Note that ¢¢ € [-b,b] and
L< / 62¢(0) exp(8cc)dG () < / 6%¢(6) exp(b]6])dG () < - / 6% exp(—62/4)dG(6).
Then we can find 6y; > 0, 6g2 > 0 and €y > 0 such that P(0y; < |0] < 0p2) > €g forall G € G.

Therefore for z € [-b—1,b+ 1],
W' ()] = / 62¢(6) exp(6)dG(6) > / 62¢(6) exp(—18](b + 1)) 90, <ipl<00,1dG(8) > 0.

5.5. Proof of Theorem 4.1. Based on the proof of Theorem 3.1, in order to prove

Theorem 4.1, it is sufficient to show that there is 0 < ¢g < 1 such that as £ > b +1

inf inf >1Ili/1Inn;
(a) Cl;%gme[—ﬁvcc—lg)]u[ca-keoé] |’U)(:C)| 1/ nn

. . _ 1 l .
(b) é‘éfgxe{cclitf,cc+eo][ w'(z)] > I (>0);

@ sup s [w(@)] <l (<o)
GEG z€[cg—eo,ca+eo)

Recall 9(z) = — [0c(6) exp(fz)dG(6). Then |¢'(z)| < [6%c(8)exp((b + 1)|0])dG(0) for

z € [-b— 1,b+ 1]. Note that §%c(6) exp((b+ 1)|0]) is bounded. Therefore

sup sup |Y' ()] < ls (5.7)
GEG ze[—b—1,b+1]

Let eg = [1/290h(b+ 1)/((b+ 1)ls)] A (1/2), where 1) is defined in Lemma 4.1. It is easy to

check that (a), (b) and (c) hold for this ;. The details are omitted. theorem.

5.6. Proof of Lemma 4.3. We prove it in three steps.

Step 1: To prove f; € F as n is large. Clearly g;() > 0 and m; — 1. Simple algebra
computations show that u?|H (v/20/u)| < 2v/uand | [ ¢(0)H(v/26/u)df] < u. Then g5(6) > 0

as n is large and (1 —m2)? = O(u®*?). Let w;(z) = — [ 0f(x|6)g:(0)df for i = 1 and 2. One
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can see that w;(—u/3) > 0 and w;(—u) < 0 as n is large. Therefore —u <cp < —u/3 and

g1 € G for large n. Similarly, g» € G. Therefore f;(z) € F.
Step 2: To prove x*(f1, f2) < la/n. Note that fi(z) > my [c(0)f(2]0)do > I exp(—z?/4)
and

ale) = Fi(@)P < 20— mo)?2fi(a) + 2utm3] [ £(ol6)e(0)H (V2 u)do)"

Then
(i, f2) < 0) + L [[[ exp(—(0 - 2/2))H (20/u) A6 da.

It turns out that x2(f1, f2) = O(u?*!) < ly/n since using Parseval identity

JUf exp(—(0 — /27 H(V20 Wb < s [1[ exp(~(n—u)"/2)H n/w)ddy
— / s ()2 exp(—t2/u?)dt

S 21411,

Step 3: To prove (¢, — c,)? > ls(Inn)®/n. Note that |wh(z)| is bounded for all
z € [~b,b] and all n. Then [ws(cs,)]* = [wa(cp,) —ws(cs)]? < Liles, —cp)* and (cp, —c5)* >

lo[wa(cy,)]?. Let zp = ¢,/V2. Then —u/V2 < 2o < —u/(3V2). Using integration by parts,

lwa(cp,)] = lau’ exp(—23/2) - I/nexp(—(n-—a:o)2/2)H(77/U)dnl

Y

™| [ exp(—(n — m0)*/2) H'(n/u)dn|
Lz [ exp(~(n = w0)*/2) H (nfu)ds]

1
> lsu”_l/ tsin(t/6)dt — leu™.
0

Then (cs, — ¢5)? > Lu' ™2 = l(Inn)**/n.
5.7. Proof of Lemma 5.1. Forz € (—¢,£), h(z) > (Inn)~" and |w(z)| > (Inn) ()]
Since () is decreasing and 9(cg) = 0, then (i) holds with M, = [|[¢(cg — €)| A |h(ce + €)|]-

(ii)-(iv) are simple algebra calculations. The details are omitted.
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5.8. Proof of Lemma 5.2. if w(z) > pd,,

wy (1)
w(x) = w(z) — pd, + pd,

w(:c) - pdn + pdn - dln > pdn —d
T pdy

n _ 1 — (pﬂ,)-—l’uGUS/%

Then

ﬁg%ns %’i‘iﬁ) SP(\/%gzjns 1‘/—%—@)

Applying Theorem 5.16 on page 168 in Petrov (1995) to the LHS of the above inequality,

P(Wy(z) <0) < &(—v/ngaw(z) /o) + Ava/{vnlon + vVngaw(z))*}.

Then (5.1) follows Lemma 5.1. (5.2) can be proved similarly. The details are omitted.
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